_	bject Code:- AMCA0203N ll. No:	
NOIDA INSTITUTE OF ENGINEERING ANI (An Autonomous Institute Affilia MCA SEM: II - THEORY EXAMIN	ted to AKTU, Lucknow)	
Subject: Data Structure and A	·	
Time: 3 Hours General Instructions:	Max. Marks: 100	
IMP: Verify that you have received the question paper	or with the correct course, code, branch etc.	
1. This Question paper comprises of three Sections -2		
Questions (MCQ's) & Subjective type questions.	,	
2. Maximum marks for each question are indicated or	· -	
3. Illustrate your answers with neat sketches whereve	r necessary.	
4. Assume suitable data if necessary.5. Preferably, write the answers in sequential order.		
6. No sheet should be left blank. Any written material	after a blank sheet will not be	
evaluated/checked.		
SECTION-A	20	
1. Attempt all parts:-		
1-a. Which of the following case exist in comple	exity theory? (CO1)	
(a) Best case		
(b) Worst case	1	
(c) Average case		
(d) All of the mentioned		
1-b. An array Index starts with (CO1)	1	
(a) 0		
(b) 1		
(c) 2		
(d) 3		
1-c. A data structure in which elements can be i	nserted or deleted at/from both ends 1	
but not in the middle is? (CO2)		
(a) Queue		
(b) Circular queue		
(c) Dequeue		
(d) Priority queue		
1-d. A queue follows (CO2)	1	
(a) FIFO		
(b) LIFO		

	(c)	Ordered array	
	(d)	Linear tree	
1-e.		the adjacency matrix of a directed graph the row sum is the degree and the column sum is the degree. (CO3)	1
	(a)	in,out	
	(b)	out,in	
	(c)	out,Out	
	(d)	None	
1-f.	D	irected Graphs is- (CO3)	1
	(a)	A directed graph is a set of vertices and edges.	
	(b)	A directed graph is a graph in which the edges have a direction.	
	(c)	Edges are usually represented by arrows pointing in the direction.	
	(d)	All the Above	
1-g.	W	That is a full binary tree? (CO4)	1
	(a)	Each node has exactly zero or two children	
	(b)	Each node has exactly two children	
	(c)	Each node has exactly one or two children	
	(d)	None of These	
1-h.	W	That is an AVL tree? (CO4)	1
	(a)	A tree which is balanced and is a height balanced tree	
	(b)	A tree which is unbalanced and is a height balanced tree	
	(c)	A tree with three children	
	(d)	A tree with atmost 3 children	
1-i.	В	ellmann Ford Algorithm is an example for: (CO5)	1
	(a)	Dynamic Programming	
	(b)	Greedy Algorithms	
	(c)	Linear Programming	
	(d)	Branch and Bound	
1-j.	Fo	ollowing are a properties of the spanning tree connected to graph G: (CO5)	1
	(a)	A connected graph G can have more than one spanning tree.	
	(b)	The spanning tree does not have any cycle	
	(c)	Spanning tree has n-1 edges, where n is the number of nodes	
	(d)	All The Above	
2. Att	empt a	all parts:-	
2.a.	D	efine Circular linked list. (CO1)	2
2.b.	D	efine Priority Queue. (CO2)	2
2.c.	D	efine graph with an example. (CO3)	2
2.d.	D	efine Tree and Binary Tree. (CO4)	2

2.e.	Define sorting. (CO5)	2
SECTION	<u>ON-B</u>	30
3. Answ	ver any <u>five</u> of the following:-	
3-a.	Differentiate between Array and Linked list. (CO1)	6
3-b.	Define Big Theta notation with an example. (CO1)	6
3-c.	Define searching? List different types of searching available? Write algorithm for linear search. (CO2)	6
3-d.	Explain & write down the algorithm for pop operation in stack. (CO2)	6
3.e.	Compare adjacency matrix and adjacency list representations of graph. (CO3)	6
3.f.	Define B Tree and its advantages. (CO4)	6
3.g.	Define Spanning Tree, Minimum Spanning Tree and its applications. (CO5)	6
SECTION	<u>ON-C</u>	50
4. Answ	ver any one of the following:-	
4-a.	Define single linked list and write an algorithm to delete the first node of Singly Linked List. (CO1)	10
4-b.	What do you mean by Asymptotic Notation? (CO1)	10
5. Answ	ver any one of the following:-	
5-a.	Evaluate the postfix expression ab + cd/- where a=5, b=4, c=9, d=3. (CO2)	10
5-b.	What is Tower of Hanoi problem? Explain solutions of Tower of Hanoi problem using proper tree representation where number of disks n= 3 and towers are labeled as A, B, C. (CO2)	10
6. Answ	ver any one of the following:-	
6-a.	Explain different types of Graphs in detail with help of example. (CO3)	10
6-b.	Differentiate between DFS and BFS? (CO3)	10
7. Answ	ver any one of the following:-	
7-a.	What is a binary search tree? How do you insert an element into a binary search tree? (CO4)	10
7-b.	Explain Inorder, Preorder and Postorder Traversal operation on Binary tree with example. (CO4)	10
8. Answ	ver any one of the following:-	
8-a.	Explain & write an algorithm of Quick sort with example. (CO5)	10
8-h	Write Kruskal's algorithm to find the minimum cost spanning tree (CO5)	10